Complete sets of pairwise orthogonal Latin squares and the corresponding projective planes
نویسندگان
چکیده
منابع مشابه
Complete Sets of Orthogonal Self-Orthogonal Latin Squares
We show how to produce algebraically a complete orthogonal set of Latin squares from a left quasifield and how to generate algebraically a maximal set of self-orthogonal Latin squares from a left nearfield. For a left Veblen-Wedderburn system, we establish the algebraic relationships between the standard projective plane construction of a complete set of Latin squares, our projective plane cons...
متن کاملMaximal sets of mutually orthogonal Latin squares
Maximal sets of s mutually orthogonal Latin squares of order v are constructed for in nitely many new pairs (s; v). c © 1999 Published by Elsevier Science B.V. All rights reserved
متن کاملNew bounds for pairwise orthogonal diagonal Latin squares
A diagonal Latin square is a Latin square whose main diagonal and back diagonal are both transversals. Let dr be the least integer such that for all n > dr there exist r pairwise orthogonal diagonal Latin squares of order n. In a previous paper Wallis and Zhu gave several bounds on the dr. In this paper we shall present some constructions of pairwise orthogonal diagonal Latin squares and conseq...
متن کاملPermutation polynomials induced from permutations of subfields, and some complete sets of mutually orthogonal latin squares
We present a general technique for obtaining permutation polynomials over a finite field from permutations of a subfield. By applying this technique to the simplest classes of permutation polynomials on the subfield, we obtain several new families of permutation polynomials. Some of these have the additional property that both f(x) and f(x) + x induce permutations of the field, which has combin...
متن کاملCompositional inverses, complete mappings, orthogonal Latin squares and bent functions
We study compositional inverses of permutation polynomials, complete map-pings, mutually orthogonal Latin squares, and bent vectorial functions. Recently it was obtained in [33] the compositional inverses of linearized permutation binomials over finite fields. It was also noted in [29] that computing inverses of bijections of subspaces have applications in determining the compositional inverses...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series A
سال: 1992
ISSN: 0097-3165
DOI: 10.1016/0097-3165(92)90067-5